
USERS GUIDE FOR 1,4 OWNERS

>

\

>

(

<

i

i

»

CP/M USER'S GUIDE

FOR CP/M 1-4 OWNERS

Copyright (c) 1979

DIGITAL RESEARCH

COPYRIGHT (c) 1979

VECTOR GRAPHIC, INC-

REVTSION OF NOV- 15, 1979

Copyright

Copyright (c) 1979 by Digital Research. All rights reserved.

No part of this publication mav be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into

anv language or computer language, in any form or by any
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of

Digital Research, Post Office Box 579, Pacific Grove,
California 93950.

Disclaimer

Digital Research makes no representations or warranties with

respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any parti-

cular purpose. Further, Digital Research reserves the right

to revise this publication and to make changes from time to

time in the content hereof without obligation of Digital

Research to notify any person of such revision or changes.

Trademarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Research.

CP/M 2.0 USER'S GUIDE FOR CP/M 1.4 OWNERS

Copyright (c) 1979
Digital Researcn, Box 579
Pacific Grove, California

1. An Overview of CP/M 2.0 Facilities 1

2. user Interface 3

3. Console Command Processor (CC?) Interface 4

4. 3TAT Enhancements 5

5. PIP Ennancements 6

5. ED Enhancements 10

7. The XSU9 Function 11

a. 3DOS Interface Conventions 12

1. Art OVERVIEW OF CP/M 2.0 FACILITIES.

CP/M 2.0 is a nigh-performance single-console operating system
wnicn uses table driven tecnnigues to allow field reconfiguration to
match a wide variety of disk capacities. All of the fundamental file
restrictions are removed, while maintaining upward compatibility from
previous versions of release 1. Features of CP/M 2.0 include field
specification of one to sixteen logical drives, each containing up to
eignt megabytes. Any particular file can reacn the full drive size
witn the capaoility to expand to thirty-two megabytes in future
releases. The directory size can be field configured to contain any
reasonable number of entries, and each file is optionally tagged with
read/only and system attributes. Users of CP/M 2.0 are physically
separated oy user numoers, with facilities for file copy operations
from one user area to another, powerful relative-record random access
functions are cresent in CP/M 2.0 wnicn provide direct access to any
of the 65536 records of an eight megaoyte file.

All disk-dependent portions of CP/M 2.0 are placed into a
3I0S-r esident "disk parameter block" wnicn is either hand coded or
produced automatically using the disk definition macro library
provided with CP/M 2.3. The end user need only specify the maximum
numoer of active disks, the starting and ending sector numoers, the
data allocation size, the maximum extent of the logical disk,
directory size information, and reserved track values. The macros use
this information to generate tne appropriate taoles and table
references for use during CP/M 2.3 operation. Deblocking information
is also provided wnicn aids in assembly or disassembly of sector sizes
wnich are multiples of tne fundamental 128 Dyte data unit, and the
system alteration manual includes general-purpose subroutines wnich
use tne tnis deblocking information to take advantage pf larger sector
sizes. Use of these subroutines, together with the ta*ole driven data
access algorithms, make CP/M 2.3 truly a universal data management
system.

File expansion is achieved oy providing up to 512 logical file
extents, where eacn logical extent contains 16K bytes of data. CP/M
2.0 is structured, however, so that as much as 123K bytes of data is
addressed by a single physical extent (corresponding to a single
directory entry) , thus maintaining compatibility with previous
versions while taking full advantage of directory space.

Random access facilities are present in CP/M 2.0 which allow
immediate reference to any record of an eight megabyte file. Using
CP/M’s unique data organization, data blocks are only allocated when
actually required and movement to a record position requires little
search time. Sequential file access is upward comoatiole from earlier
versions to the full .eight megaoytes, wniie random, access
compatibility stops at 512K byte files. Due to CP/M 2.0’s simoler and
faster random access, application orogrammers are encouraged to alter
their programs to take full advantage of the 2.0 facilities.

Several CP/M 2.0 modules and utilities have improvements whicn
correspond to the enhanced file system. STAT and PIP both account for
file attributes and user areas, while the CCP provides a "login"

(All Information Contained Herein is Proprietary to Digital Research.)

1

function to change from one user area to anotner. The CCP aiso
formats directory displays in a more convenient manner and accounts
for doth CRT and hard-copy devices in its enhanced line editing
functions.

The sections below point out the individual differences between
CP/M 1.4 and CP/M 2.0, with the understanding that the reader is
either familiar witn CP/M 1.4, or has access to the 1.4 manuals.

(All Information Contained Herein is Proprietary to Digital Research.)

2. USER INTERFACE.

Console line processing takes CRT-type devices into account with
tnree new control characters, shown with an asterisk in the list below

(the symbol "ctl" below indicates tnat the control key is

simultaneously depressed) :

rub/del removes and ecnoes last character
ctl-C reDoot when at beginning of line
ctl-E physical end of line
ctl-H oackspace one cnaracter position*
ctl-J (line feed) terminates current input*
ctl-M (carriage return) terminates input
ctl-R retype current line after new line
ctl-U remove current line after new line
ctl-X Dackspace to beginning of current line*

In oarticular, note that ctl-H produces the proper backspace overwrite
function (ctl-H can be changed internally to anocner cnaracter, such

as delete, througn a simple single byte change). Furtner, the line

editor keeps track of the current prompt column position so that the

operator can properly align data input following a ctl-U, ctl-R, or

ctl-X command.

(All Information Contained Herein is Proprietary to Digital Research.)

3

3 o CONSOLE COMMAND PROCESSOR (CCP) INTERFACE

there are four functional differences between CP/M 1.4 and CP/M
2.0 at the console command processor (CCP) level. The CCP now
displays directory information across the screen (four elements per
line) , the USER command is present to allow maintenance of separate
files in the same directory, and the actions of the “ERA *.*“ and
"SAVE" commands have changed. The altered DIR format is
self-explanatory, while the USER command takes the forms

USER n

where n is an integer value in the range 0 to 15. Upon cold start,
tne operator is automatically “logged" into user area number 0, which
is compatible with standard CP/M 1.4 directories. Tne operator may
issue the USER command at any time to move to anotner logical area
within the same directory. Drives which are logged-in while
addressing one user number are automatically active when the operator
moves to another user numoer since a user number is simply a prefix
which accesses particular directory entries on the active disks.

The active user number is maintained until changed by a
subsequent USER command, or until a cold start operation when user 0

is again assumed.

Due to the fact that user numbers now tag individual directory
entries, tne ERA *.* command has a different effect. In version 1.4,
this command can oe used to erase a directory wnicn has "garDage"
information, perhaps resulting from use of a diskette under another
operating system (heaven forbid!). In 2.0, however, the ERA *.*
command affects only the current user numoer. Thus, it is necessary
to write a simple utility to erase a nonsense disk (the program simply
writes the hexadecimal pattern E5 throughout the disk)

.

The SAVE command in version 1.4 allows only a single memory save
operation, with the potential of destroying the memory image due to
directory operations following extent boundary changes. Version 2.3,
nowever, does not perform directory operations in user data areas
after disk writes, and thus the SAVE operation can be used any number
of times without altering the memory image.

(All Information Contained Herein is Proprietary to Digital Research.)

4

4. 5TAT ENHANCEMENTS.

The STAT program has a number of additional functions which
allow disk parameter display, user number display, and file indicator
manipulation. The command:

STAT VAL:

produces a summary of the available status commands, resulting in the
output:

Temp R/O Disk: d:=R/0
Set Indicator: d : f ilename

.

tyD $R/0 $R/N $SYS $DIR
Disk Status : DSK: d :D5K:
User Status : USR:
Iobyte Assign:
(list of possible assignments)

whicn gives an instant summary of the possible STAT commands. The
command form:

STAT d:f ilename. tvp $S

wnere "d:“ is an optional drive name, and "filename. typ" is an
unamDiguous or ambiguous file name, produces the output display
format:

Size Rees Bytes Ext ACC
48 43 6k 1 R/0 A: ED. COM
55 55 12k 1 R/0 (A :P IP. COM)

6 5536 128 2k 2 R/N A.-X.DAT

where tne SS oarameter causes the “Size" field to be disolayed
(without the $S, the Size field is skipped, but the remaining fields
are displayed) . The Size field lists the virtual file size in
records, while the "Rees" field sums the number of virtual records in
each extent. For files constructed sequentially, the Size and Rees
fields are identical. The ••Bytes" field lists the actual number of
bytes allocated to the corresponding file. The minimum allocation
unit is determined at configuration time, and thus tne number of bytes
corresponds to the record count plus the remaining unused space in the
last allocated block for sequential files. Random access files are
given data areas only wnen written, so the Bytes field contains the
only accurate allocation figure. In the case of random access, the
Size field gives the logical end-of-file record position and the Rees
field counts the logical records of each extent (each of these
extents, however, may contain unallocated "holes" even though they are
added into the record count) . The "Ext" field counts the number of
logical 16K extents allocated to the file. Unlike version 1.4, the
Ext count does not necessarily correspond to the number of directory
entries given to the file, since there can be up to 128K oytes (8

logical extents) directly addressed oy a single directory entry,
depending upon allocation size (in a special case, there are actually
256K bytes which can be directly addressed by a physical extent)

.

The "Acc“ field gives the R/0 or R/W access mode, which is
changed using the commands shown below. Similarly, the parentheses

(All Information Contained Herein is Proprietary to Digital Research.)

5

shown around the PIP.COM file name indicate that it has the “system"
indicator set,, so that it will not be listed in DIR commands. The
four command forms

STAT d:f ilename. typ $R/0
STAT d : f ilename . typ $R/W
STAT d : f ilename . typ $SYS
STAT d : f ilename . typ $DXR

set or reset various permanent file indicators. The R/0 indicator
places the file (or set of files) in a read-only status until changed
oy a subsequent STAT command. The R/0 status is recorded in the
directory with tne file so that it remains R/0 through intervening
cold start operations. The R/W indicator places the file in a
permanent read/write status. The SYS indicator attacnes the system
indicator to the file, while the DIR command removes the system
indicator. The " filename. typ“ may be ambiguous or unambiguous, but in
either case, the files wnose attributes are changed are listed at the
console when the change occurs. The drive name denoted by “d:" is
optional.

When a file is marked R/0, subsequent attempts to erase or write
into the file result in a terminal BDOS message

ados Err on d: File R/0

The BDOS then waits for a console input before performing a subsequent
warm start (a “return” is sufficient to continue) „ The command form

. STAT a :DSK

:

lists the drive characteristics of tne disk named by ”d:“ which is in
tne range As, Bs, The drive characteristics are listed in
tne formats

d: Drive Characteristics
65536: 128 Byte record Capacity
8192: Kilooyte Drive Capacity
128: 32 Byte Directory Entries

0: Checked Directory Entries
1024: Records/ Extent
128: Records/ Block
58: Sectors/ Track
2: Reserved Tracks

where “d:“ is the selected drive, followed by the total record
capacity (65536 is an 8 megabyte drive) , followed by the total
capacity listed in Kiloovtes. The directory size is listed next,
followed by the ,checked ,, entries. The number of checked entries is
usually identical to the directory size for removable media, since
this mechanism is used to detect changed media during CP/M operation
witnout an intervening warm start. For fixed media, the number is
usually zero, since the media is not changed without at least a cold
or warm start. The number of records per extent determines the
addressing capacity of eacn directory entry (1024 times 128 bytes, or

(All Information Contained Herein is Proprietary to Digital Research.)

6

123K in the example aoove). The number of records per clock shows the

oasic allocation size (in the example, 128 r ecoras/olock times 128

bytes per record, or 16K Dytes per block). The listing is then

followed by the number of physical sectors Der track and the number of

reserved tracks. For logical drives which share the same physical
disk, the number of reserved tracks may be quite large, since this
mechanism is used to skip lower-numbered disk areas allocated to otner
logical disks. The command form

STAT DSK

:

oroduces a drive cnaracter istics taDle for all currently active
drives. The final STAT command form is

STAT USR:

which produces a list of the user numbers whicn have files on the

currently addressed disk. The display format is:

Active User : 2

Active Files: 2 1 3

where the first line lists the currently addressed user number, as set

by the last CC? USER command, followed by a list of user numbers
scanned from the current directory. In the above case, the active
user numoer is a (default at cold start)

,

witn three user numbers
whicn have active files on the current disk. The operator can

subsequently examine the directories of the other user numbers by

logging-in with USER 1, USER 2, or USER 3 commands, followed by a DIR
command at the CC? level.

(All Information Contained Herein is Proprietary to Digital Research.)

7

PIP ENHANCEMENTS5 .

PIP provides three new functions whicn account for the features
of CP/M 2.0. All three functions take the form of file parameters
which are enclosed in square orackets following the appropriate file
names. The commands are:

Gn Get File from User number n
(n in the range u - 15)

W- tfrite over R/0 files without
console interrogation

R Read system files

The G command allows one user area to receive data files from another.
Assuming the operator has issued the USSR 4 command at the CCP level,
tne PIP statement

PIP X.Y = X.Y [G2]

reads file X.Y from user number 2 into user area number 4. The
command

PIP A:-As * .
* [G2]

copies all of the files from the A drive di-r-ectory for user number 2

into the A drive directory of the currently logged user number. Note
tnat to ensure file security, one cannot copy files into a different
area than the one which is currently addressed by the USER command.

Note also that the PIP program itself is initially copied to a
user area (so that subsequent files can be copied) using the SAVE
command. The sequence of operations shown below effectively moves PIP
from one user area to the next.

USER 0

DDT PIP.COM
(note PIP size
G0
USER 3

SAVE s PIP.COM

login user 0

load PIP to memory
s)

return to CCP
login user 3

where s is the integral number of memory ”pages•, (256 byte segments)
occupied by PIP. The number s can be determined when PIP.COM is
loaded under DDT, by referring to the value under the ••NEXT” display.
If for example, the next available address is 1D00, then PIP.COM
requires 1C hexadecimal pages (or 1 times 16 + 12 = 23 pages) , and
tnus the value of s is 28 in the subsequent save. Once PIP is copied
in this manner, it can then be copied to another disk belonging to the
same user number through normal pip transfers.

Under normal operation, PIP will not overwrite a file which is
set to a permanent R/0 status. If attempt is made to overwrite a R/0
file, the prompt

(All Information Contained Herein is Proprietary to Digital Researcn.)

8

hPSTINATION FILE IS R/O, DELETE (Y/N) ?

is issued. If the operator responds with the character “y" then the

file is overwritten. Otnerwise, the response

** NOT DELETED **

is issued, the file transfer is skippped, and PIP continues with tne

next operation in sequence. In order to avoid the prompt and response

in the case of R/O file overwrite, the command line can include the W

parameter, as shown oelow

PIP A. : =3 : * . COM [N]

which copies all non-system files to the A drive from the B drive, and

overwrites any R/O files in the process. If the operation involves

several concatenated files, the W parameter need only be included witn

the last file in the list, as shown in the following example

PIP A. DAT = 3 .DAT, F : NEW .DAT, G : OLD. DAT [N]

Files with the system attribute can be included in PIP transfers

if the R parameter is included, otherwise system files are not

recognized. The command line

PIP ED.COM = 3 : ED. COM [R]

for example, reads tne ED.COM file from the B drive, even if it has

oeen marked as a R/O and system file. The system file attributes are

copied, if present.

It should be noted that downward compatibility with previous
versions of CP/M is only maintained if the file does not exceed one

megabyte, no file attributes are set, and the file is created by user

a.

(All Information Contained Herein is Proprietary to Digital Research.)

9

6. ED ENHANCEMENTS.

The CP/M standard orogram editor provides several new facilities
in the 2.3 release. Experience has shown that most operators use the
relative line numbering feature of ED, and thus the editor has the “v“
(Verify Line) option set as an initial value. The operator can, of
course, disable line numoering by typing the "-v" command. If you are
not familiar with the ED line numoer mode, you may wish to refer to
tne Appendix in tne ED user’s guide, where the ,0 v ,t command is
descr ibed.

ED also takes file attributes into account. If the operator
attempts to edit a read/only file, the message

** FILE IS READ/ONLZ **

appears at the console. The file can oe loaded and examined, but
cannot be altered in any way. Normally, the operator simply ends the
edit session, and uses STAT to change the file attribute to R/W. If
the edited file has the "system'* attribute set, the message

"SYSTEM** FILE NOT ACCESSIBLE

is displayed at the console, and the edit session is aborted. Again,
the STAT program can be used to change the system attribute, if
desirea.

Finally, the insert mode ("i") command allows CRT line editing
functions, as described in Section 2, above.

(All Information Contained Herein is Proprietary to Digital Research.)

13

7. THE XSUB FUNCTION.

An additional utility program is supplied with version 2.0 of

CP/M, called XSUB, which extends the power of the SUBMIT facility to

include line input to programs as well as the console command

processor. The XSUB command is included as the first line of your

submit file and, when executed, self-relocates directly below the CCP.

All subsequent submit command lines are processed by XSUB, so that

programs which read buffered console input (BDOS function 10) receive

their input directly from the submit file. For example, the file

SAVER. SUB could contain the submit lines:

XSUB
DDT
I51.HEX
R
G0
SAVE 1 52.COM

with a subsequent SUBMIT command:

SUBMIT SAVER X Y

which substitutes X for $1 and Y for $2 in the command stream. The

XSUB program loads, followed by DDT which is sent the command lines

“IX. HEX’* "R“ and “G0" thus returning to the CCP. The final command

“SAVE 1 Y . COM " is processed by the CCP.

The XSUB program remains in memory, and prints the message

(xsub active)

on each warm start operation to indicate its presence. Subsequent

submit command streams do not recruire the XSUB, unless an intervening

cold start has occurred. Note that XSUB must be loaded after DESPOOL,

if both are to run simultaneously.

(All Information Contained Herein is Proprietary to Digital Research.)

11

8. 8D0S INTERFACE CONVENTIONS,

CP/M 2 . 3 system calls take place in exactly the same manner as
earlier versions, with a call to location 0005H, function number in
register C, and information address in register oair DE. Single byte
values are returned in register A, with double byte values returned in
HL (for reasons of compatibility, register A = L and register 3 = H
upon return in all cases). A list of CP/M 2,0 calls is
with an asterisk following functions which, are either
from version 1.4 to 2.0. Note that a zero value
oufe-of range function numbers.

is

given below,
new or revised
returned for

0 System Reset
1 Console Input
2 Console Output
3 Reader Input
4 Puncn Output
5 List Output
6* Direct Console I/O
7 Get I/O Byte
3 Set I/O Byte
9 Print String

10* Read Console Buffer
11 Get Console Status
12* Return Version Number
13 Reset Disk System
14 Select Disk
15* Open File
16 dose File
17* Search for First
18* Search for Next

19* Delete File
20 Read Sequential
21 Write Seauential
22* Make File
23* Rename File
24* Return Login Vector
25 Return Current Disk
26 Set DMA Address
27 Get Addr(Alloc)
28* Write Protect Disk
29* Get Addr (R/O Vector)
30* Set File Attrioutes
31* Get Addr (Disk Farms)
32* Set/Get User Code
33* Read Random
34* Write Random
35* Comoute File Size
36* Set Random Record

ci

(functions 2b, 29, and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.) The new or revised functions
are described below.

Function 6: Direct Console I/O.

Direct Console I/O is supported under CP/M 2.0 for those
applications where it is necessary to avoid the BOOS console I/O
operations. Programs wnicn currently perform direct I/O tnrougn the
BIOS should be cnanged to use direct I/O under BDOS so that they can
be fully supported under future releases of MP/M and CP/M.

Upon entry to function 6, register E eitner contains hexadecimal
FF, denoting a console input request, or register E contains an ASCII
character . If the input value is FF , then function 6 returns A = 00
if no character is ready, otherwise A contains the next console incut
cnaracter.

If the input value in E is net FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console.

(All Information Contained Herein is Proprietary to Digital Research.)

12

Function 10: Read Console Buffer.

The console Duffer read operation remains unchanged except that

console line editing is supported, as described in Section 2. Note

also that certain functions which return the carriage to the leftmost

oosition (e.g., ctl-X) do so only to the column position where the

prompt ended (previously, the carriage returned to the extreme left

margin) . This new convention makes operator data input and line

correction more legible.

Function 12: Return 'Version Number.

Function 12 has been redefined to orovide information which

allows version-independent programming (this was previously the "lift

head" function whicn returned HL=0000 in version 1.4, but performed no

operation) . The value returned by function 12 is a two-bvte value,

with h = 30 for the CP/M release (H = 01 for MP/M) , and L = 03 for all

releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in

register L, with subsequent version 2 releases in the hexadecimal

range 21, 22, through 2F. Using function 12, for example, you can

write application Drograms which provide both sequential and ranaom

access functions, with random access disabled when operating under

early releases of CP/M.

In the file ooerations described below, DE addresses a file

control clock (FCS) . Further, all directory operations take place in

a reserved area which does not affect write buffers as was the case in

version 1.4, with the exception of Searcn First and Search Next, where

compatioility is required.

The File Control 3lock (FCB)

bytes for sequential access,
tne file is accessed randomly,
normally located at 305CH can be used
Dytes 007DH, 007EH, and 007FH are
notational purposes, the FCB format
fields:

data area consists of a sequence of 33

and a series of 36 bytes in the case that

The default file control Dlock

for random access files, since
available for this purpose. For
is shown with the following

(All Information Contained Herein is Proprietary to Digital Research.)

13

! <3 r I f 1 1 f 2 I / / I f3 I tl 1 12 1 13 lex| si I s2 I rc| d0 I / / I dn I cr I r0 I rl I r

2

03 01 02 ... 06 09 10 11 12 13 14 15 16 ... 31 32 33 34 35

wner e

dr drive code (G - 16)
0 -> use default drive for file
1 => auto disk select drive A

,

2 => auto disk select drive B,
® ® •

16=> auto disk select drive P.

fl...f8 contain the file name in ASCII
upper case, with high bit = 3

tl,t2,t3 contain the file type in ASCII
upper case, witn high bit - 0

tl ' , t2‘, and t3 * denote the
bit of these positions,
tl ‘ = 1 => Read/Only file,
t2 ' =1 => SYS file, no DIR list

ex

si

s2

r c

da «

cr

contains the current extent number,
normally set to 00 by the user, but
in range 3-31 during file I/O

reserved for internal system use

reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

record count for extent “ex,"
takes on values from 0 - 128

,dn filled-in by CP/M, reserved for
system use

current record to read or write in
a sequential file operation, normally
set to zero by user

r3,rl,r2 optional random record number in the
range 0-65535, with overflow to r2,
r0,rl constitute a 16-bit value with
low byte r0 , and high byte rl

Function 15: Open File.

Tne Open File operation is identical to previous definitions,
with the exception that byte s2 is automatically zeroed. Note that
previous versions of CP/M defined this byte as zero, but made no

(All Information Contained Herein is Proprietary to Digital Research.)

14

cnecks to assure compliance. Thus, the byte is cleared to ensure

upward compatiDili ty with the latest version, where it is required.

Function 17: Searcn for First.

Searcn First scans the directory for a match with the file given

by the FCB addressed by DE. The value 255 (hexadecimal FF) is

returned if the file is not found, otherwise a value of A equal to 0,

1, 2, or 3 is returned indicating the file is present. In the case

that the file is found, the current DMA address is filled with the

record containing the directory entry, and the relative starting

position is A * 32 (i.e., rotate the A register left 5 bits, or ADD A

five times). Altnough not normally required for application programs,

the directory information can be extracted from the buffer at this

position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any

position from fl through ex matches the corresponding field of any

directory entry on the default or auto—selected disk drive. If the dr

field contains an ASCII question mark, then the auto disk select

function is disabled, the default disk is searched, with the search

function returning any matched entry, allocated or free, belonging to

any user number. This latter function
aDDiication programs, out does allow complete
current directory values. If the dr field is

s2 byte is automatically zeroed.

is not normally used by
flexibility to scan all
not a Question mark, the

Function 18: Search for Next.

The Searcn Next function is

function, except that the directory
matched entry. Similar to function
decimal value 255 in A when no more dir

similar to the S

scan continues f

17, function 18
ectory items matcn.

e

r

r

arcn First
om the last
eturns the

Function 19: Delete File.

The Delete File function removes files which match the FCB

addressed by DE. The filename and type may contain ambiguous
references (i.e., question marks in various positions), but the drive

select code cannot be ambiguous, as in the Search and Search Next

functions.

Function 19 returns a decimal 255 if the reference file or files

could not be found, otherwise a value in the range 0 to 3 is returned.

(All Information Contained Herein is Proprietary to Digital Research.)

15

Function 22: Make File*

CP/M,
The Make File operation is identical to previous versions
except that byte s2 is zeroed upon entry to the 3D0S.

of

Function 23; Rename File.

The Actions of the file rename functions are the same as
previous releases except that the value 255 is returned if the rename
function is unsuccessful (the file to rename could not be found)

,

otherwise a value in the range id to 3 is returned.

Function 24; Return Login Vector.

HL
dr
dr
re

The login vector value returned oy CP/M
, where the least significant bit of L co
ive A, and the nigh order bit of H cor
ive, labelled p. Note that compatibility i

leases, since registers A and l" contain the

r

r

s

2.0 is a 16-bit value in
responds to the first
esponds to the sixteenth
maintained with earlier
same values upon return.

Function 28: Write Protect Current Disk.

The
protection
the disk,
message

disk write protect function provides temporary write
for the currently selected disk. Any attempt to write to
before the next cold or warm start operation produces the

Bdos Err on d: R/0

Function 29: Get R/O Vector.

Function 29 returns a bit vector in register pair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant oit corresponds to drive A,
while the most significant bit corresponds to drive p. The R/0 bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M whicn detect changed disks.

Function 33: Set File Attributes.

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/0 and System attributes (tl‘ and t2‘ above) can be
set or reset. The DE pair addresses an unamoiguous file name with the
appropriate attributes set or reset. Function 30 searches for a

(All Information Contained Herein is Proprietary to Digital Research.)

16

matcn, and chanqes the matched directory entry to contain the selected

inaicators. Indicators fl' through f4* are not presently used, but

may be useful for applications programs, since they are not involved

in the matching orocess during file open and close operations.

Indicators f5* tnrough f3* and t3* are reserved for future system

expansion.

Function 31: Get Disk Parameter Block Address.

The address of the BIOS resident disk parameter block is

returned in HL as a result of this function call. This address can be

used for either of two purposes. First, the disk parameter values can

De extracted for display and space computation purposes, or transient

programs can dynamically change the values of current disk parameters

when the disk environment cnanges, if required. Normally, application

programs will not require this facility.

Function 32: Set or Get User Code.

An application program can change or interrogate the currently

active user number Dy calling function 3^. If register E - cF

nexauecimal, tnen tne value of the current user number is returned in

register A, where the value is in the range 3 to 31. If register E is

not FF, then the current user number is changed to the value of E

(modulo 32) .

Function 33: Read Random.

The Read Random function is similar to the sequential file read

operation of previous releases, except that the read operation takes

place at a particular record number, selected by the 24-bit value

constructed from the three byte field following the FCB (byte

positions r0 at 33, rl at 34, and r2 at 35). Note that the sequence

of 24 bits is stored with least significant oyte first (r 0)

,

middle

pyte next (rl)

,

and high byte last (r 2)

.

CP/M release 2.0 does not

reference byte r2, except in computing the size of a file (function

35) .• 3yte r2 must be zero, however, since a non-zero value indicates

overflow past the end of file.

Thus, in version 2.3, the r3,rl byte pair is treated as a

double-byte, or ”word“ value, which contains the record to read. This

value ranges from 3 to 65535, providing access to any particular

record of the 8 megabyte file. In order to process a file using

random access, the base extent (extent 3) must first be opened.

Altnough the Dase extent may or may not contain any allocated data,

this ensures that the file is properly recorded in the directory, and

is visible in DIR requests. The selected record number is then stored

into the random record field (r3,rl), and the BDOS is called to read

the record. Upon return from the call, register A either contains an

(All Information Contained Herein is Proprietary to Digital Research.)

17

error code, as listed below, or the value 00 indicating the operation
was successful. In the latter case, the current DMA address contains
the randomly accessed record. Note that contrary to the sequential
read operation, the record number is not advanced. Thus, subsequent
random read operations continue to read the same record.

Upon each random read operation, the logical extent and current
record values are automatically set. Thus, the file can oe
sequentially read or written, starting from the current randomly
accessed position. Note, however, that in this case, the last
randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a sequential write operation. You can, of course, simply advance
the random record position following each random read or write to
obtain the effect of a sequential I/O operation.

Error codes returned in register A following a random read are
listed below.

01 reading unwritten data
02 (not returned in random mode)
03 cannot close current extent
04 seek to unwritten extent
05 (not returned in read mode)
06 seek past physical end of disk

Error code 01 and 04 occur wnen a random read operation accesses a

data clock wnicn has not been previously written, or an extent which
has not been created, whicn are equivalent conditions. Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is

not physically write protected. Error code 06 occurs whenever byte r2

is non-zero under the current 2.0 release. Normally, non-zero return
codes can Be treated as missing data, with zero return codes
indicating operation complete.

• Function 34? Write Random.

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address. Further, if the disk extent or data block which is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues. As in the Read Random
operation, the random record number is not changed as a result of the
write. The logical extent number and current record positions of the
file control block are set to correspond to the random record which is

being written. Again, sequential read or write operations can
commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a sequential
write operation. Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent

(All Information Contained Herein is Proprietary to Digital Research.)

18

in

co

witch as it does in sequential mode under either CP/M 1.4 or CP/M

. 0 .

The error codes returned by a random write are identical to the

random read operation with the addition of error code 35, which
indicates that a new extent cannot be created due to directory
o ve r f 1 ow

.

Function 35: Compute File Size.

When computing the size of a file, the DE reqister pair

addresses an FC3 in random mode format (bytes r0, rl, and c2 are

present). The FCB contains an unambiguous file name wnich is used in

the directory scan. Upon return, the random record bytes contain the

•virtual" file size wnicn is, in effect, the record address of the

record following the end of the file. if, following a call to

function 35, the high record byte r2 is 31, then the file contains the
maximum record count 65536 in version 2.0. Otherwise, bytes r3 and rl

constitute a 16-bit value (r0 is the least significant byte, as

before) which is the file size.

Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end of

file, tnen performing a sequence of random writes starting at the

preset record address.

Tne virtual size of a file corresponds to the physical size when
the file is written sequentially. If, instead, the file was created
in random mode and "holes" exist in the allocation, then the file may
in fact contain fewer records than the size indicates. If, for

example, only the last record of an eight megabyte file is written in

random mode (i.e., record number 65535), then the virtual size is

65536 records, although only one block of data i's actually allocated.

Function 36: Set Random Record.

The Set Random Record function causes the 3DOS to automatically
produce the random record position from a file which has been read or

written sequentially to a particular point. The function can be

useful in two ways.

First, it is often necessary to initially read and scan a

sequential file to extract the positions of various "key" fields. As

each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record position is placed into a

table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
The scheme is easily generalized when variable record lengths are

(All Information Contained Herein is Proprietary to Digital Research.)

19

involved since the program -need only store the buffer-relative byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time,,

A second use of function 36 occurs when switching from -a

sequential read or write over to random read or write. A file is
sequentially accessed to a particular point in the file, function 36
is called which- sets the record number, and subsequent random read and
write operations continue from the selected point in the file.

This section is concluded with a rather extensive, but complete
example of random access operation. The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,
assembled, and placed into a file labelled RAl1DGM.COM, the CCP level
command:

RANDOM X . DAT

starts the test program. The program looks for a file by the name
X . DAT (in this particular case) and, if found, proceeds to prompt the
console for input. If not found, the file is created before the
prompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return.
The input commands take the form

nW nR Q

where n is an integer value in the range 3 to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, and quit processing, respectively. If the W command is issued,
tne RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return. RANDOM then writes the character string into the
X .DAT file at record n. If the R command is issued, RANDOM reads
record number n and displays the string value at the console. If the
Q command is issued, the X .DAT file is closed, and the program returns
to the console command processor. In the interest of brevity (ok, so
the program's not so brief), the only error message is

error, try again

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label "ready where the individual commands are interpreted. The
default file control block at 005CH and the default buffer at 0080H
are used in all disk operations. The utility subroutines then follow.

(All Information Contained Herein is Proprietary to Digital Research.)

20

whicn contain the or incipal input line processor

,

called -readc.

"

This particular program shows the elements of random access
processing, and can be used as the basis for fur ther program
development.

* *

* sample random access program for co/m 2.0 *

* *

0100 org 10 0h ;base of tpa

0000 —
9

reboot equ 0 0 0 0h ; system reboot
0005 = bdos equ 00 05h ; odos entry point

0001 ss coninp equ 1 ;console input function
0002 = conout equ 2 ;console output function
0009 s ps tr ing equ 9 ;print string until
000a = rstr ing equ 10 ;read console buffer
0 00C = version equ 12 ; return version number
0 00f = openf equ 15 ;file open function
0810 = closef equ 16 ;close function
0016 s makef equ 22 ;make file function

21 = reaor equ 33 ;read random
0022 = wr i ter eau 34 ; write random

805c 35 fCO equ 0 0 5cn ;default file control block
007a s ranrec equ fcb+33 ; random record position
0 37f = ranovf equ fco+35 ;high order (overflow) byte
0080 = buff equ 0080h ;buffer address

000d —
9

cr equ 0dh ^carriage return
030a = if equ 0ah ;line feed

.**************** ***********************************
9

• * *
9

;* load SP , set-up file for random access *

. * *
9.***
9

9100 31bc0 Ixi sp, stack

3103 0 e0c
0105 cd0 50
0108 f e20
010a d21 60

o

013d lllbfl
0113 cdda3
0113 C3000

e
9

versok s

version 2.0?
mvi c, version
call bdos
cpi 20h ^version 2.0 or better?
jnc versok
bad version, message and go back
Ixi d ,badver
call print
jmp reboot

correct version for random access

(All Information Contained Herein is Proprietary to Digital Research.)

21

0116 0e0f mvi c p openf ;open default fcb
0118 115c0 Ixi d p fcb
011b cd050 call bdos
0 lie 3c inr a ;err 255 becomes zero
aiif C2370

e

jnz ready
9

9 cannot open file, so create it
0122 0el6 mvi c,makef
0124 115c0 Ixi d „ fcb
3127 cd050 call bdos
312a 3c inr a ,°err 255 becomes zero
012b c23 70

©

jnz ready
9

«
/ cannot create file, directory full

3 12e 113a0 Ixi d , nospace
0131 cdda0 call print
0134 c3 0 0 0 jmp reboot ;back to ccp

B

c if
B

?* loop back to “ready** after each command
o is
9

9

ready

;

0
9

o

file is ready for processing

3137 cde53
9

call readcom ;read next command
013a 227d0 snld ranrec ;store input record#
313d 217f0 Ixi h, ranovf
0140 3600 mvi m,0 ;clear high byte if set
3142 fe51 cpi ‘Q* ;quit?
0144 C2560

o

jnz notq
9

©
f quit processing, close file

3147 3el3 mvi c,closef
0149 115c0 Ixi a , fco
014c cd350 call bdos
014f 3c inr a ;err 255 becomes 0

3150 cab93 jz error ;error message, retry
0153 C3000 jmp reboot ;back to ccp

9

9

;
* end

o ff

of quit command, process write
9

notq:
©
9 not the quit command, random write?

3156 f e5 7 cpi *W‘
0158 C2890 jnz notw

9

•
9 this is a random write, fill buffer until -

015b 114d0 Ixi d ,datmsg
3 15e cdda3 call print ;data prompt

(All :Information Contained Herein is Proprietary to Digital Re

22

3161 3e7f mvi c , 1 27 ;up to 127 characters
3163 21800 lxi n,Duf f ; destination

r loop

:

; read next character to buff
3166 c5 pusn b ;save counter
3167 e5 push h ;next destination
3168 cac20 call ge tchr ;cnaracter to a

316o el pop h ;restore counter
316c cl DOD b ;restore next to fill
316a f e0d cpi cr ;end of line?
3 1 of ca783 jz er looo

• not end, store character
0172 77 mov m,a
3173 23 inx h ;next to fill
3174 3d dcr c ; counter goes down
3175 C2660 jnz rloop ;end of ouffer?

erloop:
end of read loop , store 30

3178 3630 mvi m , 3

write the record to selected record number
317a 3e2 2 mvi c, writer
317c 115C0 lxi d , fcb
017f cd0 50 call bdos
318 2 b7 ora a ;error code zero?
3183 c2b93 jnz error ;message if not
3 lo 6 c337j j mp ready ;for another record

** ******** ****** ******* it**************************
£

* end
*

of write command. process read *

*

'

notw:
not a write command, read record?

3189 f e5 2 cpi ' R'

318b c2b90 jnz error ; skip if not
’

read random record
3 18e 3e21 mvi c , readr
3190 115c0 lxi d , fcb
0193 cd350 call bdos
3196 hi ora a ? return code 03?
319 7 c2b90 jnz error

’

read was successful, write to console
019a cdcf 0 call crlf ; new line
3 19d 3e83 mvi c , 128 ?max 128 characters
3 19 f 21800 lxi h,buf

f

;next to get
wloop ?

01a2 7e mov a,m ynext character
01a3 23 inx h ?next to get
01a4 e6 7f ani 7 fh ;mask parity
01a6 ca3 70 jz ready ;for another command if 00
01a9 c5 push b ;save counter
31aa e5 push h ?save next to get

(All Information Contained Herein is Proprietary to Digital Research*

)

23

01ab f e20 cpi jgraphic?
!

01ad d4c80 cnc putenr jskip output if not
0X130 el pop h
0151 cl pop b O '0102 0d dcr c 7 countscount”l
0103 c2a20 jnz wloop
0 106 C3370

o

jmp ready
9

» kkkkkktfkkiskkk
o iS
B

k

7
* end of read command,, all errors end-uo here k

c *
«

is

ekkk

9

errors
0109 11590 Ixi d,errmsg
01bc cdda0 call print
aibf c3 370 jmp ready

9

9

o *
0

k

7
* utility subroutines for console i/o k

• *
9

k

okkkkkkkiskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkiskkiskkkk

getchr

:

; read next console character to a
0 lc2 0e01 mvi c^coninp
01c4 cd350 call bdos
0 lc7 c9 ret

7

putchr s

;wr ite character from a to console o
0 lc8 0602 mvi c,conout
0 lea 5f mov e,a ;character to send
01cb Cd050 call bdos ;send character
31ce c9 ret

7

crlfs
; send carriage return line feed

aicf 3e0d mvi a,cr ;carriage return
01dl cdc80 call putchr
01d4 3e0a mvi a, If ?line feed
01d6 cdc80 call putchr
31d9 c9 ret

pr int:

; print the buffer addressed by de until $
01da d5 push d
0 Idb edef 0 call cr If
0 Ide dl pop d ;new line
aidf 0e09 mvi c,pstrina
0 lei cd050 call bdos jprint the string
31e4 c9 ret

9

readcom

:

(All Information Contained Herein is Proprietary to Digital Research.

)

24

0

0

a

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

; r ead the next command line to the conbuf
le5 116b0 ixi d, prompt
le8 cdda0 call orint ; command?
leb 0e0a mvi c , rstr ing
led 117a0 lxi d , conbuf
1 f 0 cd0 50 call bdos ;read command line

’ command line is Dresent, scan it
If 3 21000 lxi h,0 ; start with 0000
If 6 117c0 lxi d ,conlin; command line
If 9 la readc: ldax d ;next command cnaracter
If a 13 inx d ; to next command Dosition
lfb b7 ora a ; cannot be end of command
lfc c8 rz

not ze ro, numeric?
lfd d630 sui '0 '

Iff f e0a cpi 10 ; carry if numeric
201 d2130 jnc endrd

add-in next digit
204 29 dad h ;

*2
205 4d mov c,l
206 44 mov b,h ; oc = value * 2
207 29 dad h ;

*4
203 29 dad h ;

*8
209 09 dad b ; *2 + *8 = *10
20a 85 add 1 ;+digit
2ao br mov 1 ,a
20c d2f 90 jnc readc ;for another char
20f 24 inr h ;overflow
210 c3f 90 jmp readc ;for another char

enard:
end of read, restore value in a

213 c630 adi '0' ; command
215 f e61 coi 'a' ;translate case?
217 d8 rc

lower case, mask lower case bits
213 e65f ani 10 l?llllb —
21a c9 ret

* string data
*

area for console messages *

*

oadver

:

021b 536f79 db
nospace:

023a 4e6f 29 db
datmsg

:

0 24d 547970 db
er rmsg

:

0259 457272 db
prompt:

0260 4e6 570 db

'sorry, you need cp/rn version 2$’

'no directory space?'

' type data: 5

'

'error, try again.?'

'next command? ?'

(All Information Contained Herein is Proprietary to Digital Research.

)

25

027a
027b
027c
0 0 21

0 29c

0 2bc

(All

« it *

;* fixed and
• *

variable data area *

*
t

vieieleiKlgicieisicIticieieieieisicicIgis'klciticieleitiele’kie'Xisigicieicicleie'k'kigleicig'Xie-k'kie
a

21 conbuf; db conlen ;length of console buffer
consiz: as 1 ^resulting size after read
conlin: ds 32 ^length 32 buffer

- conlen equ $-consiz

ds 32 ; 16 level stack
stack

;

end

Information Contained Herein is Proprietary to Digital Research.

)

26

>

• V

